Learning Stochastic Tree Edit Distance

نویسندگان

  • Marc Bernard
  • Amaury Habrard
  • Marc Sebban
چکیده

Trees provide a suited structural representation to deal with complex tasks such as web information extraction, RNA secondary structure prediction, or conversion of tree structured documents. In this context, many applications require the calculation of similarities between tree pairs. The most studied distance is likely the tree edit distance (ED) for which improvements in terms of complexity have been achieved during the last decade. However, this classic ED usually uses a priori fixed edit costs which are often difficult to tune, that leaves little room for tackling complex problems. In this paper, we focus on the learning of a stochastic tree ED. We use an adaptation of the ExpectationMaximization algorithm for learning the primitive edit costs. We carried out series of experiments that confirm the interest to learn a tree ED rather than a priori imposing edit costs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Metrics Between Tree Structured Data: Application to Image Recognition

The problem of learning metrics between structured data (strings, trees or graphs) has been the subject of various recent papers. With regard to the specific case of trees, some approaches focused on the learning of edit probabilities required to compute a so-called stochastic tree edit distance. However, to reduce the algorithmic and learning constraints, the deletion and insertion operations ...

متن کامل

Learning probabilistic models of tree edit distance

Nowadays, there is a growing interest in machine learning and pattern recognition for tree-structured data. Trees actually provide a suitable structural representation to deal with complex tasks such as web information extraction, RNA secondary structure prediction, computer music, or conversion of semi-structured data (e.g. XML documents). Many applications in these domains require the calcula...

متن کامل

Learning String Edit Distance

In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string edit distance. Our stochastic model allows us to learn the optimal string edit dis...

متن کامل

Complexity of Computing Distances between Geometric Trees

Geometric trees can be formalized as unordered combinatorial trees whose edges are endowed with geometric information. Examples are skeleta of shapes from images; anatomical tree-structures such as blood vessels; or phylogenetic trees. An inter-tree distance measure is a basic prerequisite for many pattern recognition and machine learning methods to work on anatomical, phylogenetic or skeletal ...

متن کامل

NED: An Inter-Graph Node Metric Based On Edit Distance

Node similarity is a fundamental problem in graph analytics. However, node similarity between nodes in different graphs (inter-graph nodes) has not received a lot of attention yet. The inter-graph node similarity is important in learning a new graph based on the knowledge of an existing graph (transfer learning on graphs) and has applications in biological, communication, and social networks. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006